Collaborative filtering

A distinction is often made between two forms of data collection for recommendation systems. Explicit feedback relies on the user giving explicit signals about their preferences i.e. review ratings. Where as, implicit feedback refers to non-explicit signals of preference e.g. user watch-time. Traditionally, recommender systems can be split into three types:

  • Collaborative filtering (CF): CF produces recommendations based on the knowledge of users’ attitudes towards items, that is, it uses the “wisdom of the crowd” to recommend items.

  • Content-based (CB): CB recommender systems focus on the attributes of the items to recommend other items similar to what the user likes, based on their previous actions or explicit feedback.

  • Hybrid recommendation systems: Hybrid methods are a combination of CB recommending and CF methods

In many applications, content-based features are not easy to extract, and thus, collaborative filtering approaches are preferred. Thus, we will only explore collaborative filtering methods from now on.

CF methods typically fall into three types, memory-based, model-based and more recently deep-learning based (Su & Khoshgoftaar, 2009, He et al., 2017). Neighbour-based CF and item-based/user-based top-N recommendations are typical examples of memory-based systems that utilises user rating data to compute the similarity between users or items. As mentioned previously, common model-based approaches include Bayesian networks, latent semantic models and markov decision processes. In this investigation, we will utilise a weighted matrix factorization approach. Later on, we will generalize the matrix factorization algorithm via a non-linear neural architecture (a softmax model).

However, there are a number of limitations to our approaches such as the inability to model the order of interactions. For instance, Markov chain algorithms (Rendle et al., 2010) can not only encode the same information as traditional CF methods but also the order in which user’s interacted with the items. Furthermore, the sparsity of the frequency matrix (described later on), makes computations prohibitly expensive in real-world settings, without some optimization.

Setup

The next few code cells details the initial preparatory steps needed for the development of our collaborative filtering models, namely importing the required libraries; scaling the ids of users and artists;constructing a indicator variable for presence of user-artist interaction;finding the most assigned tag of an artist.

from __future__ import print_function
import numpy as np
import pandas as pd
import collections
from IPython import display
from matplotlib import pyplot as plt
import sklearn
import sklearn.manifold
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.logging.set_verbosity(tf.logging.ERROR)

# Add some convenience functions to Pandas DataFrame.
pd.options.display.max_rows = 10
pd.options.display.float_format = '{:.3f}'.format

# Install Altair and activate its colab renderer.
print("Installing Altair...")
!pip install git+git://github.com/altair-viz/altair.git
import altair as alt
alt.data_transformers.enable('default', max_rows=None)
alt.renderers.enable('colab')
print("Done installing Altair.")
2021-11-30 10:57:05.120733: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2021-11-30 10:57:05.120783: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
WARNING:tensorflow:From /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages/tensorflow/python/compat/v2_compat.py:111: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
Installing Altair...
Collecting git+git://github.com/altair-viz/altair.git
  Cloning git://github.com/altair-viz/altair.git to /tmp/pip-req-build-6xycq1vs
  Running command git clone --filter=blob:none -q git://github.com/altair-viz/altair.git /tmp/pip-req-build-6xycq1vs
  Resolved git://github.com/altair-viz/altair.git to commit a987d04e276106f62d4247ea48a1fcead2d06636
  Installing build dependencies ... ?25l-
 \
 |
 /
 done
?25h  Getting requirements to build wheel ... ?25l-
 done
?25h  Preparing metadata (pyproject.toml) ... ?25l-
 done
?25hRequirement already satisfied: jsonschema<4.0,>=3.0 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from altair==4.2.0.dev0) (3.2.0)
Collecting toolz
  Downloading toolz-0.11.2-py3-none-any.whl (55 kB)
?25l

     |█████▉                          | 10 kB 29.8 MB/s eta 0:00:01
     |███████████▊                    | 20 kB 32.2 MB/s eta 0:00:01
     |█████████████████▋              | 30 kB 19.9 MB/s eta 0:00:01
     |███████████████████████▌        | 40 kB 13.0 MB/s eta 0:00:01
     |█████████████████████████████▍  | 51 kB 7.0 MB/s eta 0:00:01 
     |████████████████████████████████| 55 kB 4.9 MB/s             
?25hRequirement already satisfied: jinja2 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from altair==4.2.0.dev0) (3.0.3)
Requirement already satisfied: entrypoints in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from altair==4.2.0.dev0) (0.3)
Requirement already satisfied: pandas>=0.18 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from altair==4.2.0.dev0) (1.3.4)
Requirement already satisfied: numpy in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from altair==4.2.0.dev0) (1.21.4)
Requirement already satisfied: pyrsistent>=0.14.0 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (0.18.0)
Requirement already satisfied: importlib-metadata in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (4.8.2)
Requirement already satisfied: setuptools in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (47.1.0)
Requirement already satisfied: attrs>=17.4.0 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (21.2.0)
Requirement already satisfied: six>=1.11.0 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (1.16.0)
Requirement already satisfied: python-dateutil>=2.7.3 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from pandas>=0.18->altair==4.2.0.dev0) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from pandas>=0.18->altair==4.2.0.dev0) (2021.3)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from jinja2->altair==4.2.0.dev0) (2.0.1)
Requirement already satisfied: zipp>=0.5 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from importlib-metadata->jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (3.6.0)
Requirement already satisfied: typing-extensions>=3.6.4 in /opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages (from importlib-metadata->jsonschema<4.0,>=3.0->altair==4.2.0.dev0) (4.0.0)
Building wheels for collected packages: altair
  Building wheel for altair (pyproject.toml) ... ?25l-
 \
 |
 done
?25h  Created wheel for altair: filename=altair-4.2.0.dev0-py3-none-any.whl size=812168 sha256=a871318be16a9414a4766ed7a398bb21fe3e2f9d9dffab320bae42401a925f69
  Stored in directory: /tmp/pip-ephem-wheel-cache-2s42_sy3/wheels/06/13/e0/5bd72c969fe3954ee1561739e5c58e2ddfe5c10fcdffb12faa
Successfully built altair
Installing collected packages: toolz, altair
Successfully installed altair-4.2.0.dev0 toolz-0.11.2
Done installing Altair.
# NEEDED FOR GOOGLE COLAB
# from google.colab import auth
#from google.colab import drive
# import gspread
# from oauth2client.client import GoogleCredentials

# drive.mount('/content/drive/')
# os.chdir("/content/drive/My Drive/DCU/fouth_year/advanced_machine_learning/music-recommodation-system")

Helper functions

def calculate_sparsity(M):
    """
    Computes sparsity of frequency matrix
    """
    matrix_size = len((M['userID'].unique())) * len((M['artistID'].unique()))  # Number of possible interactions in the matrix
    num_plays = len(M['weight']) # Number of weights
    sparsity = (float(num_plays/matrix_size))
    return sparsity
def build_music_sparse_tensor(music_df):
  """
  Args:
    music_df: a pd.DataFrame with `userID`, `artistID` and `weight` columns.
  Returns:
    a tf.SparseTensor representing the feedback matrix.
  """
  indices = music_df[['userID', 'artistID']].values
  values = music_df['weight'].values
  return tf.SparseTensor(
      indices=indices,
      values=values,
      dense_shape=[num_users, num_artist])
def preproces_ids(music_df):
  """
  Args:
    ratings_df: a pd.DataFrame with `userID`, `artistID` and `weight` columns.
  Returns:
    a pd.DataFrame where userIDs and artistIDs now start at 1 
      and end at n and m (defined above), respectively
    two dictionary preserving the orginal ids. 
  """
  unique_user_ids_list = sorted(music_df['userID'].unique())
  print(unique_user_ids_list[0])

  unique_user_ids = dict(zip(range(0, len(unique_user_ids_list) ),unique_user_ids_list))
  unique_user_ids_switched = dict(zip(unique_user_ids_list, range(0, len(unique_user_ids) )))
  
  unique_artist_ids_list = sorted(music_df['artistID'].unique())
  unique_artist_ids = dict(zip(range(0, len(unique_artist_ids_list) ),unique_artist_ids_list))
  unique_artist_ids_switched = dict(zip(unique_artist_ids_list, range(0, len(unique_artist_ids_list) )))

  music_df['userID'] = music_df['userID'].map(unique_user_ids_switched)
  music_df['artistID'] = music_df['artistID'].map(unique_artist_ids_switched)

  return music_df, unique_user_ids, unique_artist_ids
def split_dataframe(df, holdout_fraction=0.1):
  """Splits a DataFrame into training and test sets.
  Args:
    df: a dataframe.
    holdout_fraction: fraction of dataframe rows to use in the test set.
  Returns:
    train: dataframe for training
    test: dataframe for testing
  """
  test = df.sample(frac=holdout_fraction, replace=False)
  train = df[~df.index.isin(test.index)]
  return train, test

Traditional recommender system development relies on explicit feedback. Many models were designed to tackle this issue as a regression problem. For instance, the input of the model would be a matrix \(F_{nm}\) denoting user’s (m) preference of items (n) on a scale. In the classic movie ratings example, this preference would be users giving a 1-to-5 star rating to different movies.

This dataset contains implicit feedback: that is, observed logs of user interactions with items, in this instance user’s listening counts to artists. However, implicit feedback does not signal negativity, in the same way as a 1-star rating would. In our data, a user could listen to song of an artist a limited number of times. But that does not necessarily mean that the particular user has an aversion to that artist i.e. it could be part of a curated playlist by another user. Therefore, we decide to construct a binary matrix, which has a value of one if the observation is observed (i.e. a listening count has been logged between an artist and a user). Note, a 0 is not used to describe unobserved artist-user interactions. This is for optimization reasons, explained below.

user_artists = pd.read_csv('data/user_artists.dat', sep='\t')
user_artists['weight'] = 1
artists = pd.read_csv('data/artists.dat', sep='\t')
artists.rename({'id':'artistID'}, inplace=True, axis=1)
user_taggedartists = pd.read_csv(r'data/user_taggedartists-timestamps.dat', sep='\t')
user_taggedartists_years = pd.read_csv(r'data/user_taggedartists.dat', sep='\t')
tags = pd.read_csv(open('data/tags.dat', errors='replace'), sep='\t')
user_taggedartists = pd.merge(user_taggedartists, tags, on=['tagID'])
num_users = user_artists.userID.nunique()
num_artist = artists.artistID.nunique()
collab_filter_df = user_artists

Here, we calculate the top 10 tags by popularity. Then, we assign it to a artist, if the artist has a top 10 tag. If an artist’s tags are not in the top 10, we input ‘N/A’. Note, the next cell can take several mintues to compute.

top_10_tags = user_taggedartists['tagValue'].value_counts().index[0:10]
user_taggedartists['top10TagValue'] = None
for index, row in user_taggedartists.iterrows():
  if row['tagValue'] in top_10_tags:
    user_taggedartists.iloc[index, -1] = row['tagValue']
user_taggedartists.fillna('N/A',inplace=True)
artists = pd.merge(user_taggedartists, artists, on=['artistID'], how='right')[['artistID','name','top10TagValue','tagValue']].fillna('N/A')
artists.groupby(['artistID','name','top10TagValue']).agg(lambda x:x.value_counts().index[0]).reset_index()
artists = artists.drop_duplicates(subset=['artistID'])
assert artists.artistID.nunique() == num_artist
artists.rename({'tagValue':'mostCommonGenre'},axis=1, inplace=True)

We require two matrices or embeddings to compute a similarity measure (one for quires and one for items), but how do we get these two embeddings?

Matrix Factorisation

Figure 2: Data flow chart

First, we need to contsruct the feedback matrix \(F \in R^{m \times n}\), where \(m\) is the number of users and \(n\) is the number of artists. The goal is to two generate two lower-dimensional matrices \(U_{mp}\) and \(V_{np}\) ( with \(p << m\) and \(p << n\)), representing latent user and artist components, so that: $\( F \approx UV^\top \)$

First,we attempt to build the frequency matrix for both training and testing data. tf.SparseTensor is used for efficient representation. Three separate arguments are used to represent a tensor, namely indices, values, dense_shape, where a value \(A_{ij} = a\) is encoded by setting indices[k] = [i, j] and values[k] = a. The last tensor dense_shape is used to specify the shape of the full underlying matrix. Note, as the indices arguments represent row and columns indices, some pre-processing needs to be performed on artist and user IDs. The IDs should start from 0 and end at \(m-1\) and \(n-1\) for users and artists respectively. Presently, userIDs start at 2. Two dictionaries, orginal_artist_ids, orginal_user_ids will preserve the original ids for analysis purposes later on. Assertions and print statements are used to ensure the validity of the transformations.

colab_filter_df, orginal_user_ids, orginal_artist_ids =  preproces_ids(collab_filter_df)
2
colab_filter_df.describe()
userID artistID weight
count 92834.000 92834.000 92834.000
mean 944.222 3235.737 1.000
std 546.751 4197.217 0.000
min 0.000 0.000 1.000
25% 470.000 430.000 1.000
50% 944.000 1237.000 1.000
75% 1416.000 4266.000 1.000
max 1891.000 17631.000 1.000

Next, we caulcate the number of unique artists, userids and sparisty of our proposed frequency matrix, before splitting into training and test subsets. Quite a sparse matrix indeed!

print(f'Number of unqiue users are: {collab_filter_df["userID"].nunique()}')
print(f'Number of unqiue artists are: {collab_filter_df["artistID"].nunique()}')
print(f'Sparsity of our frequency matrix: {calculate_sparsity(collab_filter_df)}')
Number of unqiue users are: 1892
Number of unqiue artists are: 17632
Sparsity of our frequency matrix: 0.002782815119924182
collab_filter_df.to_csv('data/test_user_artists.csv',index=False)
frequency_m_train, frequency_m_test = split_dataframe(colab_filter_df)
frequency_m_train_tensor  = build_music_sparse_tensor(frequency_m_train)
frequency_m_test_tensor  = build_music_sparse_tensor(frequency_m_test)
assert num_users  == frequency_m_train_tensor.shape.as_list()[0] 
assert num_artist == frequency_m_train_tensor.shape.as_list()[1] 
assert num_users == frequency_m_test_tensor.shape.as_list()[0] 
assert num_artist == frequency_m_test_tensor.shape.as_list()[1] 

Training a Matrix factorization model

Per the definition above, \(UV^\top\) approximates \(F\). The Mean Squared Error is used to measure this approximation error. In the notation below, k is used to represent the set of observed listening counts, and K is the number of observed listening counts.

\[ \begin{align*} \text{MSE}(F, UV^\top) = \frac{1}{K}\sum_{(i, j) \in k}{( F_{ij} - (UV^\top)_{ij})^2} \end{align*} \]

However, rather than computing the full prediction matrix, \(UV^\top\) and gathering the entries in the embeddings (corresponding to the observed listening counts) , we only gather the embeddings of the observers pairs and compute their dot products. Thereby, we reduce the complexity from \(O(NM)\) to \(O(Kp)\) where \(p\) is the embedding dimension. Stochastic gradient descent (SGD) is used to minimize the loss (objective) function. The SDG algorithim cycles through the observed listening binary and caulates the prediction according to the following equation.

\[ e_{ui} = F_{ui} - U_{i}V_{j} \]

Then it updates the user and artist as embeddings as shown in the following equations.

\[ U_{i} \leftarrow U_{i} + \alpha (e_{ui}V_{j} - \beta U_{i}) \]
\[ V_{j} \leftarrow V_{j} + \alpha (e_{ui}U_{j} - \beta V_{j}) \]

where \(\alpha\) denotes the learning rate. The algorithim continues untill convergence is found.

Other matrix factorization algorithms functions are also commonly used such as Alternating Least Squares (Takács and Tikk, 2012). A modified version of the aforementioned algorithm known as Weighted Alternating Least Squares (WALS) is slower than SDG but can be parallelised. For the purposes of this investigation, we are not particularly concerned with training times/latency requirements so we proceed with SDG.

We also decide to add regularization to our model, to avoid overfitting. Overfitting occurs when the model tries to fit the training dataset to well and does not generalize well to unseen or future data. In the context of artist recommendation, fitting the observed listening counts often emphasizes learning high similarity (between artists with many listeners), but a good embedding representation also requires learning low similarity (between artists with few listeners).

First, we define the two classes (train_matrix_norm and build_matrix_norm). The build_matrix_norm class computes the necessary pre-processing steps before we train the model such as specifying the loss metric to optimise and the loss components( e.g. gravity loss for the regularized model) and the initial artist and user embeddings. The train_matrix_norm class simply trains the models and outputs figures detailing the loss metrics and components. The methods build_vanilla() and build_reg_model() compute the necessary pre-processing steps for the non-regularized and regularized model.

### Training a Matrix Factorization model
class train_matrix_norm(object):
  """Simple class that represents a matrix normalisation model"""
  def __init__(self, embedding_vars, loss, metrics=None):
    """Initializes a Matrix normalisation model 
    Args:
      embedding_vars: A dictionary of tf.Variables.
      loss: A float Tensor. The loss to optimize.
      metrics: optional list of dictionaries of Tensors. The metrics in each
        dictionary will be plotted in a separate figure during training.
    """
    self._embedding_vars = embedding_vars
    self._loss = loss
    self._metrics = metrics
    self._embeddings = {k: None for k in embedding_vars}
    self._session = None


  @property
  def embeddings(self):
    """The embeddings dictionary."""
    return self._embeddings


  def train(self, num_iterations=100, learning_rate=1.0, plot_results=True,
            optimizer=tf.train.GradientDescentOptimizer):
    """Trains the model.
    Args:
      iterations: number of iterations to run.
      learning_rate: optimizer learning rate.
      plot_results: whether to plot the results at the end of training.
      optimizer: the optimizer to use. Default to SDG
    Returns:
      The metrics dictionary evaluated at the last iteration.
    """
    with self._loss.graph.as_default():
      opt = optimizer(learning_rate)
      train_op = opt.minimize(self._loss)
      local_init_op = tf.group(
          tf.variables_initializer(opt.variables()),
          tf.local_variables_initializer())
      if self._session is None:
        self._session = tf.Session()
        with self._session.as_default():
          self._session.run(tf.global_variables_initializer())
          self._session.run(tf.tables_initializer())
          tf.train.start_queue_runners()

    with self._session.as_default():
      local_init_op.run()
      iterations = []
      metrics = self._metrics or ({},)
      metrics_vals = [collections.defaultdict(list) for _ in self._metrics]

      # Train and append results.
      for i in range(num_iterations + 1):
        _, results = self._session.run((train_op, metrics))
        if (i % 10 == 0) or i == num_iterations:
          print("\r iteration %d: " % i + ", ".join(
                ["%s=%f" % (k, v) for r in results for k, v in r.items()]),
                end='')
          iterations.append(i)
          for metric_val, result in zip(metrics_vals, results):
            for k, v in result.items():
              metric_val[k].append(v)

      for k, v in self._embedding_vars.items():
        self._embeddings[k] = v.eval()

      if plot_results:
        # Plot the metrics.
        num_subplots = len(metrics)+1
        fig = plt.figure()
        fig.set_size_inches(num_subplots*10, 8)
        for i, metric_vals in enumerate(metrics_vals):
          ax = fig.add_subplot(1, num_subplots, i+1)
          for k, v in metric_vals.items():
            ax.plot(iterations, v, label=k)
          ax.set_xlim([1, num_iterations])
          ax.legend()
      return results

class build_matrix_norm():
  """Simple class that builds a matrix normalisation model"""
  def __init__(self, listens, embedding_dim=3, regularization_coeff=.1, gravity_coeff=1.,
    init_stddev=0.1):
    """Initializes a Matrix normalisation model 
    Args:
      listens: the DataFrame of artist listening counts.
      embedding_dim: The dimension of the embedding space.
      regularization_coeff: The regularization coefficient lambda.
      gravity_coeff: The gravity regularization coefficient lambda_g.
    Returns:
      A train_matrix_norm object that uses a regularized loss.
  """
    self._embedding_vars = embedding_vars
    self._loss = loss
    self._metrics = metrics
    self._embeddings = {k: None for k in embedding_vars}
    self._session = None

  def sparse_mean_square_error(sparse_listens, user_embeddings, artist_embeddings):
    """
    Args:
      sparse_listens: A SparseTensor rating matrix, of dense_shape [N, M]
      user_embeddings: A dense Tensor U of shape [N, k] where k is the embedding
        dimension, such that U_i is the embedding of user i.
      artist_embeddings: A dense Tensor V of shape [M, k] where k is the embedding
        dimension, such that V_j is the embedding of movie j.
    Returns:
      A scalar Tensor representing the MSE between the true ratings and the
        model's predictions.
    """
    predictions = tf.gather_nd(
        tf.matmul(user_embeddings, artist_embeddings, transpose_b=True),
        sparse_listens.indices)
    loss = tf.losses.mean_squared_error(sparse_listens.values, predictions)
    return loss
    
  def gravity(U, V):
    """Creates a gravity loss given two embedding matrices."""
    return 1. / (U.shape[0].value*V.shape[0].value) * tf.reduce_sum(
        tf.matmul(U, U, transpose_a=True) * tf.matmul(V, V, transpose_a=True))
  
  def build_vanilla(embedding_dim=3, init_stddev=1.):
    """performs the necessary preprocessing steps for the regularized model.  """ 
    # Initialize the embeddings using a normal distribution.
    U = tf.Variable(tf.random.normal(
      [frequency_m_train_tensor.dense_shape[0], embedding_dim], stddev=init_stddev))
    V = tf.Variable(tf.random.normal(
      [frequency_m_train_tensor.dense_shape[1], embedding_dim], stddev=init_stddev))
    
    embeddings = {"userID": U, "artistID": V}
    error_train = build_matrix_norm.sparse_mean_square_error(frequency_m_train_tensor, U, V)
    error_test = build_matrix_norm.sparse_mean_square_error(frequency_m_test_tensor, U, V)
    metrics = {
        'train_error': error_train,
        'test_error': error_test
    }
    return train_matrix_norm(embeddings, error_train, [metrics])


  def build_reg_model(embedding_dim=3, regularization_coeff=.1, gravity_coeff=1.,
  init_stddev=0.1
  ):
    """performs the necessary preprocessing steps for the regularized model.  """ 
    U = tf.Variable(tf.random.normal(
      [frequency_m_train_tensor.dense_shape[0], embedding_dim], stddev=init_stddev))
    V = tf.Variable(tf.random.normal(
      [frequency_m_train_tensor.dense_shape[1], embedding_dim], stddev=init_stddev))
  
    embeddings = {"userID": U, "artistID": V}

    error_train = build_matrix_norm.sparse_mean_square_error(frequency_m_train_tensor, U, V)
    error_test = build_matrix_norm.sparse_mean_square_error(frequency_m_test_tensor, U, V)
    gravity_loss = gravity_coeff * build_matrix_norm.gravity(U, V)
    regularization_loss = regularization_coeff * (
      tf.reduce_sum(U*U)/U.shape[0].value + tf.reduce_sum(V*V)/V.shape[0].value)
    total_loss = error_train + regularization_loss + gravity_loss
    losses = {
      'train_error_observed': error_train,
      'test_error_observed': error_test,
    }
    loss_components = {
      'observed_loss': error_train,
      'regularization_loss': regularization_loss,
      'gravity_loss': gravity_loss,
    }
    #embeddings = {"userID": U, "artistID": V}

    return train_matrix_norm(embeddings, total_loss, [losses, loss_components])

Vanilla Model (non-regularized)

vanilla_model = build_matrix_norm.build_vanilla(embedding_dim=35,init_stddev=.05)
vanilla_model.train(num_iterations=2000, learning_rate=20.)
2021-11-30 10:59:15.516773: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2021-11-30 10:59:15.516821: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
2021-11-30 10:59:15.516850: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (fv-az135-680): /proc/driver/nvidia/version does not exist
2021-11-30 10:59:15.517194: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
 iteration 0: train_error=1.000074, test_error=0.999733
 iteration 10: train_error=0.998375, test_error=0.999718
 iteration 20: train_error=0.996581, test_error=0.999620
 iteration 30: train_error=0.994563, test_error=0.999332
 iteration 40: train_error=0.992106, test_error=0.998661
 iteration 50: train_error=0.988830, test_error=0.997254
 iteration 60: train_error=0.984052, test_error=0.994469
 iteration 70: train_error=0.976595, test_error=0.989169
 iteration 80: train_error=0.964604, test_error=0.979546
 iteration 90: train_error=0.945735, test_error=0.963248
 iteration 100: train_error=0.918293, test_error=0.938453
 iteration 110: train_error=0.883174, test_error=0.905822
 iteration 120: train_error=0.843895, test_error=0.868776
 iteration 130: train_error=0.803251, test_error=0.830353
 iteration 140: train_error=0.761605, test_error=0.791162
 iteration 150: train_error=0.718925, test_error=0.751109
 iteration 160: train_error=0.676227, test_error=0.710972
 iteration 170: train_error=0.635018, test_error=0.672069
 iteration 180: train_error=0.596397, test_error=0.635441
 iteration 190: train_error=0.560808, test_error=0.601587
 iteration 200: train_error=0.528255, test_error=0.570609
 iteration 210: train_error=0.498537, test_error=0.542411
 iteration 220: train_error=0.471389, test_error=0.516801
 iteration 230: train_error=0.446538, test_error=0.493547
 iteration 240: train_error=0.423733, test_error=0.472404
 iteration 250: train_error=0.402746, test_error=0.453140
 iteration 260: train_error=0.383374, test_error=0.435541
 iteration 270: train_error=0.365437, test_error=0.419417
 iteration 280: train_error=0.348775, test_error=0.404602
 iteration 290: train_error=0.333250, test_error=0.390952
 iteration 300: train_error=0.318742, test_error=0.378340
 iteration 310: train_error=0.305145, test_error=0.366659
 iteration 320: train_error=0.292369, test_error=0.355813
 iteration 330: train_error=0.280337, test_error=0.345719
 iteration 340: train_error=0.268982, test_error=0.336304
 iteration 350: train_error=0.258244, test_error=0.327505
 iteration 360: train_error=0.248072, test_error=0.319267
 iteration 370: train_error=0.238423, test_error=0.311541
 iteration 380: train_error=0.229254, test_error=0.304284
 iteration 390: train_error=0.220532, test_error=0.297457
 iteration 400: train_error=0.212224, test_error=0.291028
 iteration 410: train_error=0.204301, test_error=0.284966
 iteration 420: train_error=0.196736, test_error=0.279243
 iteration 430: train_error=0.189506, test_error=0.273834
 iteration 440: train_error=0.182588, test_error=0.268718
 iteration 450: train_error=0.175961, test_error=0.263873
 iteration 460: train_error=0.169608, test_error=0.259281
 iteration 470: train_error=0.163511, test_error=0.254924
 iteration 480: train_error=0.157654, test_error=0.250786
 iteration 490: train_error=0.152024, test_error=0.246853
 iteration 500: train_error=0.146606, test_error=0.243112
 iteration 510: train_error=0.141389, test_error=0.239549
 iteration 520: train_error=0.136363, test_error=0.236155
 iteration 530: train_error=0.131516, test_error=0.232917
 iteration 540: train_error=0.126841, test_error=0.229827
 iteration 550: train_error=0.122328, test_error=0.226876
 iteration 560: train_error=0.117970, test_error=0.224055
 iteration 570: train_error=0.113761, test_error=0.221358
 iteration 580: train_error=0.109694, test_error=0.218776
 iteration 590: train_error=0.105762, test_error=0.216304
 iteration 600: train_error=0.101962, test_error=0.213937
 iteration 610: train_error=0.098288, test_error=0.211667
 iteration 620: train_error=0.094735, test_error=0.209491
 iteration 630: train_error=0.091300, test_error=0.207403
 iteration 640: train_error=0.087979, test_error=0.205399
 iteration 650: train_error=0.084767, test_error=0.203475
 iteration 660: train_error=0.081663, test_error=0.201628
 iteration 670: train_error=0.078662, test_error=0.199853
 iteration 680: train_error=0.075762, test_error=0.198147
 iteration 690: train_error=0.072960, test_error=0.196507
 iteration 700: train_error=0.070253, test_error=0.194931
 iteration 710: train_error=0.067639, test_error=0.193414
 iteration 720: train_error=0.065115, test_error=0.191956
 iteration 730: train_error=0.062680, test_error=0.190552
 iteration 740: train_error=0.060329, test_error=0.189202
 iteration 750: train_error=0.058063, test_error=0.187902
 iteration 760: train_error=0.055877, test_error=0.186650
 iteration 770: train_error=0.053770, test_error=0.185445
 iteration 780: train_error=0.051740, test_error=0.184285
 iteration 790: train_error=0.049785, test_error=0.183167
 iteration 800: train_error=0.047902, test_error=0.182090
 iteration 810: train_error=0.046090, test_error=0.181052
 iteration 820: train_error=0.044346, test_error=0.180052
 iteration 830: train_error=0.042668, test_error=0.179089
 iteration 840: train_error=0.041054, test_error=0.178160
 iteration 850: train_error=0.039503, test_error=0.177264
 iteration 860: train_error=0.038012, test_error=0.176401
 iteration 870: train_error=0.036578, test_error=0.175568
 iteration 880: train_error=0.035201, test_error=0.174765
 iteration 890: train_error=0.033879, test_error=0.173990
 iteration 900: train_error=0.032608, test_error=0.173243
 iteration 910: train_error=0.031388, test_error=0.172521
 iteration 920: train_error=0.030217, test_error=0.171825
 iteration 930: train_error=0.029092, test_error=0.171154
 iteration 940: train_error=0.028013, test_error=0.170505
 iteration 950: train_error=0.026976, test_error=0.169879
 iteration 960: train_error=0.025981, test_error=0.169275
 iteration 970: train_error=0.025026, test_error=0.168691
 iteration 980: train_error=0.024110, test_error=0.168127
 iteration 990: train_error=0.023230, test_error=0.167583
 iteration 1000: train_error=0.022385, test_error=0.167056
 iteration 1010: train_error=0.021575, test_error=0.166548
 iteration 1020: train_error=0.020797, test_error=0.166056
 iteration 1030: train_error=0.020050, test_error=0.165581
 iteration 1040: train_error=0.019332, test_error=0.165122
 iteration 1050: train_error=0.018644, test_error=0.164678
 iteration 1060: train_error=0.017982, test_error=0.164249
 iteration 1070: train_error=0.017347, test_error=0.163833
 iteration 1080: train_error=0.016737, test_error=0.163431
 iteration 1090: train_error=0.016151, test_error=0.163043
 iteration 1100: train_error=0.015588, test_error=0.162667
 iteration 1110: train_error=0.015047, test_error=0.162303
 iteration 1120: train_error=0.014527, test_error=0.161950
 iteration 1130: train_error=0.014028, test_error=0.161609
 iteration 1140: train_error=0.013548, test_error=0.161279
 iteration 1150: train_error=0.013086, test_error=0.160959
 iteration 1160: train_error=0.012642, test_error=0.160649
 iteration 1170: train_error=0.012216, test_error=0.160349
 iteration 1180: train_error=0.011805, test_error=0.160058
 iteration 1190: train_error=0.011411, test_error=0.159776
 iteration 1200: train_error=0.011031, test_error=0.159503
 iteration 1210: train_error=0.010666, test_error=0.159238
 iteration 1220: train_error=0.010314, test_error=0.158982
 iteration 1230: train_error=0.009976, test_error=0.158733
 iteration 1240: train_error=0.009650, test_error=0.158491
 iteration 1250: train_error=0.009337, test_error=0.158257
 iteration 1260: train_error=0.009035, test_error=0.158030
 iteration 1270: train_error=0.008745, test_error=0.157810
 iteration 1280: train_error=0.008465, test_error=0.157596
 iteration 1290: train_error=0.008196, test_error=0.157388
 iteration 1300: train_error=0.007936, test_error=0.157187
 iteration 1310: train_error=0.007686, test_error=0.156991
 iteration 1320: train_error=0.007445, test_error=0.156801
 iteration 1330: train_error=0.007213, test_error=0.156617
 iteration 1340: train_error=0.006989, test_error=0.156437
 iteration 1350: train_error=0.006774, test_error=0.156263
 iteration 1360: train_error=0.006566, test_error=0.156094
 iteration 1370: train_error=0.006366, test_error=0.155930
 iteration 1380: train_error=0.006173, test_error=0.155770
 iteration 1390: train_error=0.005986, test_error=0.155614
 iteration 1400: train_error=0.005807, test_error=0.155463
 iteration 1410: train_error=0.005634, test_error=0.155316
 iteration 1420: train_error=0.005467, test_error=0.155174
 iteration 1430: train_error=0.005306, test_error=0.155035
 iteration 1440: train_error=0.005150, test_error=0.154899
 iteration 1450: train_error=0.005000, test_error=0.154768
 iteration 1460: train_error=0.004855, test_error=0.154640
 iteration 1470: train_error=0.004716, test_error=0.154515
 iteration 1480: train_error=0.004581, test_error=0.154394
 iteration 1490: train_error=0.004451, test_error=0.154276
 iteration 1500: train_error=0.004325, test_error=0.154160
 iteration 1510: train_error=0.004203, test_error=0.154048
 iteration 1520: train_error=0.004086, test_error=0.153939
 iteration 1530: train_error=0.003973, test_error=0.153833
 iteration 1540: train_error=0.003864, test_error=0.153729
 iteration 1550: train_error=0.003758, test_error=0.153628
 iteration 1560: train_error=0.003656, test_error=0.153530
 iteration 1570: train_error=0.003558, test_error=0.153434
 iteration 1580: train_error=0.003462, test_error=0.153340
 iteration 1590: train_error=0.003370, test_error=0.153249
 iteration 1600: train_error=0.003281, test_error=0.153160
 iteration 1610: train_error=0.003195, test_error=0.153073
 iteration 1620: train_error=0.003112, test_error=0.152988
 iteration 1630: train_error=0.003032, test_error=0.152906
 iteration 1640: train_error=0.002954, test_error=0.152825
 iteration 1650: train_error=0.002879, test_error=0.152746
 iteration 1660: train_error=0.002806, test_error=0.152669
 iteration 1670: train_error=0.002736, test_error=0.152594
 iteration 1680: train_error=0.002668, test_error=0.152521
 iteration 1690: train_error=0.002602, test_error=0.152449
 iteration 1700: train_error=0.002538, test_error=0.152379
 iteration 1710: train_error=0.002476, test_error=0.152311
 iteration 1720: train_error=0.002417, test_error=0.152244
 iteration 1730: train_error=0.002359, test_error=0.152179
 iteration 1740: train_error=0.002303, test_error=0.152115
 iteration 1750: train_error=0.002249, test_error=0.152053
 iteration 1760: train_error=0.002196, test_error=0.151992
 iteration 1770: train_error=0.002146, test_error=0.151933
 iteration 1780: train_error=0.002096, test_error=0.151874
 iteration 1790: train_error=0.002049, test_error=0.151817
 iteration 1800: train_error=0.002002, test_error=0.151762
 iteration 1810: train_error=0.001958, test_error=0.151707
 iteration 1820: train_error=0.001914, test_error=0.151654
 iteration 1830: train_error=0.001872, test_error=0.151601
 iteration 1840: train_error=0.001831, test_error=0.151550
 iteration 1850: train_error=0.001792, test_error=0.151500
 iteration 1860: train_error=0.001753, test_error=0.151451
 iteration 1870: train_error=0.001716, test_error=0.151403
 iteration 1880: train_error=0.001680, test_error=0.151356
 iteration 1890: train_error=0.001645, test_error=0.151310
 iteration 1900: train_error=0.001611, test_error=0.151265
 iteration 1910: train_error=0.001578, test_error=0.151221
 iteration 1920: train_error=0.001546, test_error=0.151178
 iteration 1930: train_error=0.001515, test_error=0.151135
 iteration 1940: train_error=0.001485, test_error=0.151094
 iteration 1950: train_error=0.001456, test_error=0.151053
 iteration 1960: train_error=0.001427, test_error=0.151013
 iteration 1970: train_error=0.001400, test_error=0.150974
 iteration 1980: train_error=0.001373, test_error=0.150935
 iteration 1990: train_error=0.001347, test_error=0.150898
 iteration 2000: train_error=0.001321, test_error=0.150861
[{'train_error': 0.0013214338, 'test_error': 0.15086083}]
_images/Collaborative_filtering_27_203.png

Regularized model

reg_model = build_matrix_norm.build_reg_model(regularization_coeff=0.1, gravity_coeff=1.0, embedding_dim=35,init_stddev=.05)
reg_model.train(num_iterations=2000, learning_rate=20.)
 iteration 0: train_error_observed=1.000350, test_error_observed=1.000153, observed_loss=1.000350, regularization_loss=0.017503, gravity_loss=0.000219
 iteration 10: train_error_observed=0.998725, test_error_observed=1.000160, observed_loss=0.998725, regularization_loss=0.017096, gravity_loss=0.000209
 iteration 20: train_error_observed=0.997115, test_error_observed=1.000111, observed_loss=0.997115, regularization_loss=0.016742, gravity_loss=0.000200
 iteration 30: train_error_observed=0.995423, test_error_observed=0.999926, observed_loss=0.995423, regularization_loss=0.016440, gravity_loss=0.000193
 iteration 40: train_error_observed=0.993500, test_error_observed=0.999479, observed_loss=0.993500, regularization_loss=0.016190, gravity_loss=0.000186
 iteration 50: train_error_observed=0.991094, test_error_observed=0.998540, observed_loss=0.991094, regularization_loss=0.015999, gravity_loss=0.000182
 iteration 60: train_error_observed=0.987757, test_error_observed=0.996689, observed_loss=0.987757, regularization_loss=0.015878, gravity_loss=0.000179
 iteration 70: train_error_observed=0.982698, test_error_observed=0.993174, observed_loss=0.982698, regularization_loss=0.015855, gravity_loss=0.000179
 iteration 80: train_error_observed=0.974601, test_error_observed=0.986725, observed_loss=0.974601, regularization_loss=0.015974, gravity_loss=0.000183
 iteration 90: train_error_observed=0.961508, test_error_observed=0.975427, observed_loss=0.961508, regularization_loss=0.016313, gravity_loss=0.000196
 iteration 100: train_error_observed=0.941195, test_error_observed=0.957051, observed_loss=0.941195, regularization_loss=0.016978, gravity_loss=0.000226
 iteration 110: train_error_observed=0.912536, test_error_observed=0.930352, observed_loss=0.912536, regularization_loss=0.018078, gravity_loss=0.000291
 iteration 120: train_error_observed=0.877189, test_error_observed=0.896794, observed_loss=0.877189, regularization_loss=0.019654, gravity_loss=0.000417
 iteration 130: train_error_observed=0.838836, test_error_observed=0.860020, observed_loss=0.838836, regularization_loss=0.021630, gravity_loss=0.000629
 iteration 140: train_error_observed=0.799914, test_error_observed=0.822673, observed_loss=0.799914, regularization_loss=0.023872, gravity_loss=0.000941
 iteration 150: train_error_observed=0.760728, test_error_observed=0.785208, observed_loss=0.760728, regularization_loss=0.026297, gravity_loss=0.001363
 iteration 160: train_error_observed=0.721349, test_error_observed=0.747622, observed_loss=0.721349, regularization_loss=0.028880, gravity_loss=0.001911
 iteration 170: train_error_observed=0.682586, test_error_observed=0.710569, observed_loss=0.682586, regularization_loss=0.031597, gravity_loss=0.002602
 iteration 180: train_error_observed=0.645522, test_error_observed=0.675030, observed_loss=0.645522, regularization_loss=0.034397, gravity_loss=0.003441
 iteration 190: train_error_observed=0.610938, test_error_observed=0.641767, observed_loss=0.610938, regularization_loss=0.037213, gravity_loss=0.004423
 iteration 200: train_error_observed=0.579174, test_error_observed=0.611158, observed_loss=0.579174, regularization_loss=0.039984, gravity_loss=0.005530
 iteration 210: train_error_observed=0.550252, test_error_observed=0.583282, observed_loss=0.550252, regularization_loss=0.042668, gravity_loss=0.006743
 iteration 220: train_error_observed=0.524016, test_error_observed=0.558042, observed_loss=0.524016, regularization_loss=0.045239, gravity_loss=0.008041
 iteration 230: train_error_observed=0.500236, test_error_observed=0.535254, observed_loss=0.500236, regularization_loss=0.047681, gravity_loss=0.009405
 iteration 240: train_error_observed=0.478661, test_error_observed=0.514693, observed_loss=0.478661, regularization_loss=0.049991, gravity_loss=0.010820
 iteration 250: train_error_observed=0.459050, test_error_observed=0.496126, observed_loss=0.459050, regularization_loss=0.052168, gravity_loss=0.012269
 iteration 260: train_error_observed=0.441181, test_error_observed=0.479332, observed_loss=0.441181, regularization_loss=0.054215, gravity_loss=0.013742
 iteration 270: train_error_observed=0.424857, test_error_observed=0.464107, observed_loss=0.424857, regularization_loss=0.056137, gravity_loss=0.015228
 iteration 280: train_error_observed=0.409903, test_error_observed=0.450270, observed_loss=0.409903, regularization_loss=0.057941, gravity_loss=0.016716
 iteration 290: train_error_observed=0.396168, test_error_observed=0.437664, observed_loss=0.396168, regularization_loss=0.059631, gravity_loss=0.018200
 iteration 300: train_error_observed=0.383515, test_error_observed=0.426148, observed_loss=0.383515, regularization_loss=0.061215, gravity_loss=0.019673
 iteration 310: train_error_observed=0.371830, test_error_observed=0.415603, observed_loss=0.371830, regularization_loss=0.062699, gravity_loss=0.021130
 iteration 320: train_error_observed=0.361010, test_error_observed=0.405923, observed_loss=0.361010, regularization_loss=0.064090, gravity_loss=0.022565
 iteration 330: train_error_observed=0.350967, test_error_observed=0.397016, observed_loss=0.350967, regularization_loss=0.065393, gravity_loss=0.023976
 iteration 340: train_error_observed=0.341623, test_error_observed=0.388804, observed_loss=0.341623, regularization_loss=0.066615, gravity_loss=0.025358
 iteration 350: train_error_observed=0.332910, test_error_observed=0.381215, observed_loss=0.332910, regularization_loss=0.067760, gravity_loss=0.026710
 iteration 360: train_error_observed=0.324770, test_error_observed=0.374188, observed_loss=0.324770, regularization_loss=0.068836, gravity_loss=0.028029
 iteration 370: train_error_observed=0.317151, test_error_observed=0.367669, observed_loss=0.317151, regularization_loss=0.069845, gravity_loss=0.029315
 iteration 380: train_error_observed=0.310006, test_error_observed=0.361612, observed_loss=0.310006, regularization_loss=0.070793, gravity_loss=0.030565
 iteration 390: train_error_observed=0.303295, test_error_observed=0.355973, observed_loss=0.303295, regularization_loss=0.071684, gravity_loss=0.031779
 iteration 400: train_error_observed=0.296982, test_error_observed=0.350716, observed_loss=0.296982, regularization_loss=0.072522, gravity_loss=0.032955
 iteration 410: train_error_observed=0.291032, test_error_observed=0.345807, observed_loss=0.291032, regularization_loss=0.073311, gravity_loss=0.034094
 iteration 420: train_error_observed=0.285419, test_error_observed=0.341218, observed_loss=0.285419, regularization_loss=0.074054, gravity_loss=0.035196
 iteration 430: train_error_observed=0.280114, test_error_observed=0.336922, observed_loss=0.280114, regularization_loss=0.074754, gravity_loss=0.036260
 iteration 440: train_error_observed=0.275095, test_error_observed=0.332895, observed_loss=0.275095, regularization_loss=0.075415, gravity_loss=0.037286
 iteration 450: train_error_observed=0.270340, test_error_observed=0.329115, observed_loss=0.270340, regularization_loss=0.076039, gravity_loss=0.038274
 iteration 460: train_error_observed=0.265828, test_error_observed=0.325564, observed_loss=0.265828, regularization_loss=0.076629, gravity_loss=0.039225
 iteration 470: train_error_observed=0.261543, test_error_observed=0.322225, observed_loss=0.261543, regularization_loss=0.077187, gravity_loss=0.040140
 iteration 480: train_error_observed=0.257467, test_error_observed=0.319080, observed_loss=0.257467, regularization_loss=0.077716, gravity_loss=0.041018
 iteration 490: train_error_observed=0.253585, test_error_observed=0.316117, observed_loss=0.253585, regularization_loss=0.078218, gravity_loss=0.041861
 iteration 500: train_error_observed=0.249884, test_error_observed=0.313321, observed_loss=0.249884, regularization_loss=0.078695, gravity_loss=0.042669
 iteration 510: train_error_observed=0.246350, test_error_observed=0.310680, observed_loss=0.246350, regularization_loss=0.079149, gravity_loss=0.043443
 iteration 520: train_error_observed=0.242973, test_error_observed=0.308184, observed_loss=0.242973, regularization_loss=0.079581, gravity_loss=0.044183
 iteration 530: train_error_observed=0.239741, test_error_observed=0.305823, observed_loss=0.239741, regularization_loss=0.079994, gravity_loss=0.044891
 iteration 540: train_error_observed=0.236644, test_error_observed=0.303586, observed_loss=0.236644, regularization_loss=0.080390, gravity_loss=0.045567
 iteration 550: train_error_observed=0.233673, test_error_observed=0.301465, observed_loss=0.233673, regularization_loss=0.080769, gravity_loss=0.046213
 iteration 560: train_error_observed=0.230820, test_error_observed=0.299453, observed_loss=0.230820, regularization_loss=0.081133, gravity_loss=0.046828
 iteration 570: train_error_observed=0.228075, test_error_observed=0.297541, observed_loss=0.228075, regularization_loss=0.081483, gravity_loss=0.047415
 iteration 580: train_error_observed=0.225434, test_error_observed=0.295724, observed_loss=0.225434, regularization_loss=0.081821, gravity_loss=0.047973
 iteration 590: train_error_observed=0.222887, test_error_observed=0.293995, observed_loss=0.222887, regularization_loss=0.082148, gravity_loss=0.048504
 iteration 600: train_error_observed=0.220430, test_error_observed=0.292349, observed_loss=0.220430, regularization_loss=0.082464, gravity_loss=0.049009
 iteration 610: train_error_observed=0.218057, test_error_observed=0.290779, observed_loss=0.218057, regularization_loss=0.082772, gravity_loss=0.049488
 iteration 620: train_error_observed=0.215761, test_error_observed=0.289282, observed_loss=0.215761, regularization_loss=0.083072, gravity_loss=0.049943
 iteration 630: train_error_observed=0.213538, test_error_observed=0.287852, observed_loss=0.213538, regularization_loss=0.083364, gravity_loss=0.050374
 iteration 640: train_error_observed=0.211384, test_error_observed=0.286485, observed_loss=0.211384, regularization_loss=0.083650, gravity_loss=0.050782
 iteration 650: train_error_observed=0.209294, test_error_observed=0.285177, observed_loss=0.209294, regularization_loss=0.083930, gravity_loss=0.051168
 iteration 660: train_error_observed=0.207264, test_error_observed=0.283926, observed_loss=0.207264, regularization_loss=0.084205, gravity_loss=0.051533
 iteration 670: train_error_observed=0.205290, test_error_observed=0.282726, observed_loss=0.205290, regularization_loss=0.084476, gravity_loss=0.051877
 iteration 680: train_error_observed=0.203370, test_error_observed=0.281576, observed_loss=0.203370, regularization_loss=0.084744, gravity_loss=0.052201
 iteration 690: train_error_observed=0.201499, test_error_observed=0.280473, observed_loss=0.201499, regularization_loss=0.085008, gravity_loss=0.052507
 iteration 700: train_error_observed=0.199675, test_error_observed=0.279413, observed_loss=0.199675, regularization_loss=0.085269, gravity_loss=0.052794
 iteration 710: train_error_observed=0.197895, test_error_observed=0.278394, observed_loss=0.197895, regularization_loss=0.085529, gravity_loss=0.053064
 iteration 720: train_error_observed=0.196156, test_error_observed=0.277414, observed_loss=0.196156, regularization_loss=0.085786, gravity_loss=0.053317
 iteration 730: train_error_observed=0.194457, test_error_observed=0.276470, observed_loss=0.194457, regularization_loss=0.086043, gravity_loss=0.053554
 iteration 740: train_error_observed=0.192794, test_error_observed=0.275561, observed_loss=0.192794, regularization_loss=0.086298, gravity_loss=0.053774
 iteration 750: train_error_observed=0.191166, test_error_observed=0.274685, observed_loss=0.191166, regularization_loss=0.086553, gravity_loss=0.053980
 iteration 760: train_error_observed=0.189572, test_error_observed=0.273840, observed_loss=0.189572, regularization_loss=0.086808, gravity_loss=0.054172
 iteration 770: train_error_observed=0.188008, test_error_observed=0.273024, observed_loss=0.188008, regularization_loss=0.087062, gravity_loss=0.054350
 iteration 780: train_error_observed=0.186474, test_error_observed=0.272236, observed_loss=0.186474, regularization_loss=0.087317, gravity_loss=0.054514
 iteration 790: train_error_observed=0.184968, test_error_observed=0.271474, observed_loss=0.184968, regularization_loss=0.087572, gravity_loss=0.054665
 iteration 800: train_error_observed=0.183488, test_error_observed=0.270737, observed_loss=0.183488, regularization_loss=0.087827, gravity_loss=0.054805
 iteration 810: train_error_observed=0.182034, test_error_observed=0.270024, observed_loss=0.182034, regularization_loss=0.088083, gravity_loss=0.054932
 iteration 820: train_error_observed=0.180604, test_error_observed=0.269334, observed_loss=0.180604, regularization_loss=0.088341, gravity_loss=0.055048
 iteration 830: train_error_observed=0.179197, test_error_observed=0.268665, observed_loss=0.179197, regularization_loss=0.088599, gravity_loss=0.055154
 iteration 840: train_error_observed=0.177812, test_error_observed=0.268016, observed_loss=0.177812, regularization_loss=0.088858, gravity_loss=0.055249
 iteration 850: train_error_observed=0.176448, test_error_observed=0.267388, observed_loss=0.176448, regularization_loss=0.089118, gravity_loss=0.055334
 iteration 860: train_error_observed=0.175103, test_error_observed=0.266777, observed_loss=0.175103, regularization_loss=0.089380, gravity_loss=0.055409
 iteration 870: train_error_observed=0.173778, test_error_observed=0.266185, observed_loss=0.173778, regularization_loss=0.089643, gravity_loss=0.055475
 iteration 880: train_error_observed=0.172472, test_error_observed=0.265610, observed_loss=0.172472, regularization_loss=0.089908, gravity_loss=0.055533
 iteration 890: train_error_observed=0.171183, test_error_observed=0.265050, observed_loss=0.171183, regularization_loss=0.090174, gravity_loss=0.055582
 iteration 900: train_error_observed=0.169912, test_error_observed=0.264507, observed_loss=0.169912, regularization_loss=0.090441, gravity_loss=0.055623
 iteration 910: train_error_observed=0.168657, test_error_observed=0.263978, observed_loss=0.168657, regularization_loss=0.090709, gravity_loss=0.055656
 iteration 920: train_error_observed=0.167418, test_error_observed=0.263464, observed_loss=0.167418, regularization_loss=0.090980, gravity_loss=0.055682
 iteration 930: train_error_observed=0.166195, test_error_observed=0.262963, observed_loss=0.166195, regularization_loss=0.091251, gravity_loss=0.055701
 iteration 940: train_error_observed=0.164986, test_error_observed=0.262475, observed_loss=0.164986, regularization_loss=0.091524, gravity_loss=0.055714
 iteration 950: train_error_observed=0.163793, test_error_observed=0.262001, observed_loss=0.163793, regularization_loss=0.091798, gravity_loss=0.055720
 iteration 960: train_error_observed=0.162613, test_error_observed=0.261538, observed_loss=0.162613, regularization_loss=0.092073, gravity_loss=0.055719
 iteration 970: train_error_observed=0.161448, test_error_observed=0.261087, observed_loss=0.161448, regularization_loss=0.092350, gravity_loss=0.055713
 iteration 980: train_error_observed=0.160296, test_error_observed=0.260647, observed_loss=0.160296, regularization_loss=0.092628, gravity_loss=0.055702
 iteration 990: train_error_observed=0.159157, test_error_observed=0.260218, observed_loss=0.159157, regularization_loss=0.092907, gravity_loss=0.055685
 iteration 1000: train_error_observed=0.158032, test_error_observed=0.259800, observed_loss=0.158032, regularization_loss=0.093187, gravity_loss=0.055663
 iteration 1010: train_error_observed=0.156919, test_error_observed=0.259391, observed_loss=0.156919, regularization_loss=0.093467, gravity_loss=0.055636
 iteration 1020: train_error_observed=0.155819, test_error_observed=0.258993, observed_loss=0.155819, regularization_loss=0.093749, gravity_loss=0.055605
 iteration 1030: train_error_observed=0.154731, test_error_observed=0.258604, observed_loss=0.154731, regularization_loss=0.094032, gravity_loss=0.055569
 iteration 1040: train_error_observed=0.153655, test_error_observed=0.258224, observed_loss=0.153655, regularization_loss=0.094315, gravity_loss=0.055529
 iteration 1050: train_error_observed=0.152591, test_error_observed=0.257853, observed_loss=0.152591, regularization_loss=0.094599, gravity_loss=0.055486
 iteration 1060: train_error_observed=0.151539, test_error_observed=0.257490, observed_loss=0.151539, regularization_loss=0.094883, gravity_loss=0.055438
 iteration 1070: train_error_observed=0.150498, test_error_observed=0.257136, observed_loss=0.150498, regularization_loss=0.095168, gravity_loss=0.055388
 iteration 1080: train_error_observed=0.149470, test_error_observed=0.256790, observed_loss=0.149470, regularization_loss=0.095453, gravity_loss=0.055333
 iteration 1090: train_error_observed=0.148452, test_error_observed=0.256451, observed_loss=0.148452, regularization_loss=0.095739, gravity_loss=0.055276
 iteration 1100: train_error_observed=0.147446, test_error_observed=0.256120, observed_loss=0.147446, regularization_loss=0.096024, gravity_loss=0.055216
 iteration 1110: train_error_observed=0.146451, test_error_observed=0.255797, observed_loss=0.146451, regularization_loss=0.096310, gravity_loss=0.055153
 iteration 1120: train_error_observed=0.145467, test_error_observed=0.255480, observed_loss=0.145467, regularization_loss=0.096596, gravity_loss=0.055087
 iteration 1130: train_error_observed=0.144494, test_error_observed=0.255171, observed_loss=0.144494, regularization_loss=0.096881, gravity_loss=0.055019
 iteration 1140: train_error_observed=0.143532, test_error_observed=0.254868, observed_loss=0.143532, regularization_loss=0.097167, gravity_loss=0.054948
 iteration 1150: train_error_observed=0.142580, test_error_observed=0.254572, observed_loss=0.142580, regularization_loss=0.097452, gravity_loss=0.054876
 iteration 1160: train_error_observed=0.141640, test_error_observed=0.254282, observed_loss=0.141640, regularization_loss=0.097736, gravity_loss=0.054801
 iteration 1170: train_error_observed=0.140710, test_error_observed=0.253998, observed_loss=0.140710, regularization_loss=0.098020, gravity_loss=0.054724
 iteration 1180: train_error_observed=0.139790, test_error_observed=0.253720, observed_loss=0.139790, regularization_loss=0.098304, gravity_loss=0.054646
 iteration 1190: train_error_observed=0.138881, test_error_observed=0.253449, observed_loss=0.138881, regularization_loss=0.098586, gravity_loss=0.054566
 iteration 1200: train_error_observed=0.137982, test_error_observed=0.253183, observed_loss=0.137982, regularization_loss=0.098868, gravity_loss=0.054485
 iteration 1210: train_error_observed=0.137094, test_error_observed=0.252922, observed_loss=0.137094, regularization_loss=0.099149, gravity_loss=0.054402
 iteration 1220: train_error_observed=0.136216, test_error_observed=0.252667, observed_loss=0.136216, regularization_loss=0.099430, gravity_loss=0.054317
 iteration 1230: train_error_observed=0.135347, test_error_observed=0.252418, observed_loss=0.135347, regularization_loss=0.099709, gravity_loss=0.054232
 iteration 1240: train_error_observed=0.134489, test_error_observed=0.252173, observed_loss=0.134489, regularization_loss=0.099987, gravity_loss=0.054146
 iteration 1250: train_error_observed=0.133641, test_error_observed=0.251934, observed_loss=0.133641, regularization_loss=0.100264, gravity_loss=0.054058
 iteration 1260: train_error_observed=0.132803, test_error_observed=0.251699, observed_loss=0.132803, regularization_loss=0.100540, gravity_loss=0.053969
 iteration 1270: train_error_observed=0.131975, test_error_observed=0.251470, observed_loss=0.131975, regularization_loss=0.100814, gravity_loss=0.053880
 iteration 1280: train_error_observed=0.131156, test_error_observed=0.251245, observed_loss=0.131156, regularization_loss=0.101087, gravity_loss=0.053790
 iteration 1290: train_error_observed=0.130347, test_error_observed=0.251025, observed_loss=0.130347, regularization_loss=0.101359, gravity_loss=0.053699
 iteration 1300: train_error_observed=0.129547, test_error_observed=0.250809, observed_loss=0.129547, regularization_loss=0.101629, gravity_loss=0.053608
 iteration 1310: train_error_observed=0.128757, test_error_observed=0.250598, observed_loss=0.128757, regularization_loss=0.101898, gravity_loss=0.053516
 iteration 1320: train_error_observed=0.127977, test_error_observed=0.250390, observed_loss=0.127977, regularization_loss=0.102165, gravity_loss=0.053424
 iteration 1330: train_error_observed=0.127205, test_error_observed=0.250187, observed_loss=0.127205, regularization_loss=0.102430, gravity_loss=0.053331
 iteration 1340: train_error_observed=0.126443, test_error_observed=0.249989, observed_loss=0.126443, regularization_loss=0.102694, gravity_loss=0.053238
 iteration 1350: train_error_observed=0.125690, test_error_observed=0.249794, observed_loss=0.125690, regularization_loss=0.102956, gravity_loss=0.053145
 iteration 1360: train_error_observed=0.124946, test_error_observed=0.249603, observed_loss=0.124946, regularization_loss=0.103217, gravity_loss=0.053051
 iteration 1370: train_error_observed=0.124211, test_error_observed=0.249416, observed_loss=0.124211, regularization_loss=0.103475, gravity_loss=0.052957
 iteration 1380: train_error_observed=0.123485, test_error_observed=0.249233, observed_loss=0.123485, regularization_loss=0.103732, gravity_loss=0.052864
 iteration 1390: train_error_observed=0.122767, test_error_observed=0.249053, observed_loss=0.122767, regularization_loss=0.103987, gravity_loss=0.052770
 iteration 1400: train_error_observed=0.122058, test_error_observed=0.248877, observed_loss=0.122058, regularization_loss=0.104240, gravity_loss=0.052676
 iteration 1410: train_error_observed=0.121358, test_error_observed=0.248704, observed_loss=0.121358, regularization_loss=0.104491, gravity_loss=0.052582
 iteration 1420: train_error_observed=0.120666, test_error_observed=0.248535, observed_loss=0.120666, regularization_loss=0.104740, gravity_loss=0.052488
 iteration 1430: train_error_observed=0.119982, test_error_observed=0.248370, observed_loss=0.119982, regularization_loss=0.104987, gravity_loss=0.052394
 iteration 1440: train_error_observed=0.119307, test_error_observed=0.248207, observed_loss=0.119307, regularization_loss=0.105233, gravity_loss=0.052300
 iteration 1450: train_error_observed=0.118640, test_error_observed=0.248048, observed_loss=0.118640, regularization_loss=0.105476, gravity_loss=0.052207
 iteration 1460: train_error_observed=0.117981, test_error_observed=0.247892, observed_loss=0.117981, regularization_loss=0.105717, gravity_loss=0.052113
 iteration 1470: train_error_observed=0.117330, test_error_observed=0.247739, observed_loss=0.117330, regularization_loss=0.105956, gravity_loss=0.052020
 iteration 1480: train_error_observed=0.116687, test_error_observed=0.247589, observed_loss=0.116687, regularization_loss=0.106194, gravity_loss=0.051927
 iteration 1490: train_error_observed=0.116051, test_error_observed=0.247442, observed_loss=0.116051, regularization_loss=0.106429, gravity_loss=0.051835
 iteration 1500: train_error_observed=0.115423, test_error_observed=0.247298, observed_loss=0.115423, regularization_loss=0.106662, gravity_loss=0.051742
 iteration 1510: train_error_observed=0.114803, test_error_observed=0.247156, observed_loss=0.114803, regularization_loss=0.106893, gravity_loss=0.051650
 iteration 1520: train_error_observed=0.114190, test_error_observed=0.247018, observed_loss=0.114190, regularization_loss=0.107122, gravity_loss=0.051559
 iteration 1530: train_error_observed=0.113585, test_error_observed=0.246882, observed_loss=0.113585, regularization_loss=0.107350, gravity_loss=0.051467
 iteration 1540: train_error_observed=0.112987, test_error_observed=0.246749, observed_loss=0.112987, regularization_loss=0.107575, gravity_loss=0.051376
 iteration 1550: train_error_observed=0.112396, test_error_observed=0.246618, observed_loss=0.112396, regularization_loss=0.107798, gravity_loss=0.051286
 iteration 1560: train_error_observed=0.111812, test_error_observed=0.246490, observed_loss=0.111812, regularization_loss=0.108019, gravity_loss=0.051196
 iteration 1570: train_error_observed=0.111235, test_error_observed=0.246365, observed_loss=0.111235, regularization_loss=0.108238, gravity_loss=0.051106
 iteration 1580: train_error_observed=0.110665, test_error_observed=0.246242, observed_loss=0.110665, regularization_loss=0.108455, gravity_loss=0.051016
 iteration 1590: train_error_observed=0.110102, test_error_observed=0.246121, observed_loss=0.110102, regularization_loss=0.108670, gravity_loss=0.050928
 iteration 1600: train_error_observed=0.109546, test_error_observed=0.246003, observed_loss=0.109546, regularization_loss=0.108883, gravity_loss=0.050839
 iteration 1610: train_error_observed=0.108996, test_error_observed=0.245887, observed_loss=0.108996, regularization_loss=0.109094, gravity_loss=0.050751
 iteration 1620: train_error_observed=0.108453, test_error_observed=0.245773, observed_loss=0.108453, regularization_loss=0.109303, gravity_loss=0.050664
 iteration 1630: train_error_observed=0.107916, test_error_observed=0.245662, observed_loss=0.107916, regularization_loss=0.109511, gravity_loss=0.050577
 iteration 1640: train_error_observed=0.107385, test_error_observed=0.245552, observed_loss=0.107385, regularization_loss=0.109716, gravity_loss=0.050490
 iteration 1650: train_error_observed=0.106861, test_error_observed=0.245445, observed_loss=0.106861, regularization_loss=0.109919, gravity_loss=0.050404
 iteration 1660: train_error_observed=0.106343, test_error_observed=0.245340, observed_loss=0.106343, regularization_loss=0.110121, gravity_loss=0.050318
 iteration 1670: train_error_observed=0.105831, test_error_observed=0.245237, observed_loss=0.105831, regularization_loss=0.110320, gravity_loss=0.050233
 iteration 1680: train_error_observed=0.105325, test_error_observed=0.245136, observed_loss=0.105325, regularization_loss=0.110518, gravity_loss=0.050149
 iteration 1690: train_error_observed=0.104825, test_error_observed=0.245037, observed_loss=0.104825, regularization_loss=0.110714, gravity_loss=0.050064
 iteration 1700: train_error_observed=0.104331, test_error_observed=0.244939, observed_loss=0.104331, regularization_loss=0.110907, gravity_loss=0.049981
 iteration 1710: train_error_observed=0.103842, test_error_observed=0.244844, observed_loss=0.103842, regularization_loss=0.111100, gravity_loss=0.049898
 iteration 1720: train_error_observed=0.103359, test_error_observed=0.244750, observed_loss=0.103359, regularization_loss=0.111290, gravity_loss=0.049815
 iteration 1730: train_error_observed=0.102882, test_error_observed=0.244659, observed_loss=0.102882, regularization_loss=0.111478, gravity_loss=0.049733
 iteration 1740: train_error_observed=0.102410, test_error_observed=0.244569, observed_loss=0.102410, regularization_loss=0.111665, gravity_loss=0.049652
 iteration 1750: train_error_observed=0.101944, test_error_observed=0.244481, observed_loss=0.101944, regularization_loss=0.111850, gravity_loss=0.049571
 iteration 1760: train_error_observed=0.101483, test_error_observed=0.244394, observed_loss=0.101483, regularization_loss=0.112033, gravity_loss=0.049490
 iteration 1770: train_error_observed=0.101027, test_error_observed=0.244309, observed_loss=0.101027, regularization_loss=0.112215, gravity_loss=0.049410
 iteration 1780: train_error_observed=0.100577, test_error_observed=0.244226, observed_loss=0.100577, regularization_loss=0.112395, gravity_loss=0.049331
 iteration 1790: train_error_observed=0.100131, test_error_observed=0.244145, observed_loss=0.100131, regularization_loss=0.112573, gravity_loss=0.049252
 iteration 1800: train_error_observed=0.099691, test_error_observed=0.244065, observed_loss=0.099691, regularization_loss=0.112749, gravity_loss=0.049173
 iteration 1810: train_error_observed=0.099256, test_error_observed=0.243986, observed_loss=0.099256, regularization_loss=0.112924, gravity_loss=0.049096
 iteration 1820: train_error_observed=0.098825, test_error_observed=0.243909, observed_loss=0.098825, regularization_loss=0.113098, gravity_loss=0.049018
 iteration 1830: train_error_observed=0.098400, test_error_observed=0.243834, observed_loss=0.098400, regularization_loss=0.113269, gravity_loss=0.048941
 iteration 1840: train_error_observed=0.097979, test_error_observed=0.243760, observed_loss=0.097979, regularization_loss=0.113439, gravity_loss=0.048865
 iteration 1850: train_error_observed=0.097562, test_error_observed=0.243687, observed_loss=0.097562, regularization_loss=0.113608, gravity_loss=0.048789
 iteration 1860: train_error_observed=0.097151, test_error_observed=0.243616, observed_loss=0.097151, regularization_loss=0.113775, gravity_loss=0.048714
 iteration 1870: train_error_observed=0.096744, test_error_observed=0.243546, observed_loss=0.096744, regularization_loss=0.113940, gravity_loss=0.048639
 iteration 1880: train_error_observed=0.096341, test_error_observed=0.243478, observed_loss=0.096341, regularization_loss=0.114104, gravity_loss=0.048565
 iteration 1890: train_error_observed=0.095943, test_error_observed=0.243411, observed_loss=0.095943, regularization_loss=0.114266, gravity_loss=0.048491
 iteration 1900: train_error_observed=0.095550, test_error_observed=0.243345, observed_loss=0.095550, regularization_loss=0.114427, gravity_loss=0.048417
 iteration 1910: train_error_observed=0.095160, test_error_observed=0.243280, observed_loss=0.095160, regularization_loss=0.114587, gravity_loss=0.048345
 iteration 1920: train_error_observed=0.094775, test_error_observed=0.243217, observed_loss=0.094775, regularization_loss=0.114745, gravity_loss=0.048272
 iteration 1930: train_error_observed=0.094394, test_error_observed=0.243155, observed_loss=0.094394, regularization_loss=0.114901, gravity_loss=0.048200
 iteration 1940: train_error_observed=0.094017, test_error_observed=0.243094, observed_loss=0.094017, regularization_loss=0.115057, gravity_loss=0.048129
 iteration 1950: train_error_observed=0.093645, test_error_observed=0.243035, observed_loss=0.093645, regularization_loss=0.115210, gravity_loss=0.048058
 iteration 1960: train_error_observed=0.093276, test_error_observed=0.242976, observed_loss=0.093276, regularization_loss=0.115363, gravity_loss=0.047988
 iteration 1970: train_error_observed=0.092911, test_error_observed=0.242919, observed_loss=0.092911, regularization_loss=0.115514, gravity_loss=0.047918
 iteration 1980: train_error_observed=0.092550, test_error_observed=0.242863, observed_loss=0.092550, regularization_loss=0.115664, gravity_loss=0.047848
 iteration 1990: train_error_observed=0.092193, test_error_observed=0.242808, observed_loss=0.092193, regularization_loss=0.115812, gravity_loss=0.047779
 iteration 2000: train_error_observed=0.091840, test_error_observed=0.242754, observed_loss=0.091840, regularization_loss=0.115960, gravity_loss=0.047711
[{'train_error_observed': 0.0918399, 'test_error_observed': 0.24275383},
 {'observed_loss': 0.0918399,
  'regularization_loss': 0.11595964,
  'gravity_loss': 0.04771059}]
_images/Collaborative_filtering_30_202.png

In both models, we observe a steep loss in train error and test as the model progress. Although, the regularized model has a higher MSE, both on the training and test set. It must be noted that the quality of recommendation is improved when regularization is added, which is proven when the artist_neighbors() function is utilized (detailed down below). In addition, we observe in the end evaluation section, that the performance of the model is improved when regularization is added. The test error decreases similarity to the test error, although it plateaus around the 1000 epoch mark. As expected, the additional loss generated by the regularization functions increases over epochs. For context, we added the following regularisation terms to our model.

  • Regularization of the model parameters. This is a common \(\ell_2\) regularization term on the embedding matrices, given by \(r(U, V) = \frac{1}{N} \sum_i \|U_i\|^2 + \frac{1}{M}\sum_j \|V_j\|^2\).

  • A global prior that pushes the prediction of any pair towards zero, called the gravity term. This is given by \(g(U, V) = \frac{1}{MN} \sum_{i = 1}^N \sum_{j = 1}^M \langle U_i, V_j \rangle^2\)

These terms modifies the “global” loss (as in, the sum of the network loss and the regularization loss) in order to drive the optimization algorithm in desired directions i.e. prevent overfitting.

Evaluating the embeddings

We will use two similairty meausres to inspect the robustness of our system:

  • Dot product: score of artist j \(\langle u, V_j \rangle\).

  • Cosine angle: score of artist j \(\frac{\langle u, V_j \rangle}{\|u\|\|V_j\|}\).

DOT = 'dot'
COSINE = 'cosine'
def compute_scores(query_embedding, item_embeddings, measure=DOT):
  """Computes the scores of the candidates given a query.
  Args:
    query_embedding: a vector of shape [k], representing the query embedding.
    item_embeddings: a matrix of shape [N, k], such that row i is the embedding
      of item i.
    measure: a string specifying the similarity measure to be used. Can be
      either DOT or COSINE.
  Returns:
    scores: a vector of shape [N], such that scores[i] is the score of item i.
  """
  u = query_embedding
  V = item_embeddings
  if measure == COSINE:
    V = V / np.linalg.norm(V, axis=1, keepdims=True)
    u = u / np.linalg.norm(u)
  scores = u.dot(V.T)
  return scores
def user_recommendations(model,user_id, k=15, measure=DOT, exclude_rated=False):
    scores = compute_scores(
        model.embeddings["userID"][user_id], model.embeddings["artistID"], measure)
    score_key = measure + ' score'
    df = pd.DataFrame({
        'score': list(scores),
        'name': artists.sort_values('artistID', ascending=True)['name'],
        'most assigned tag':artists.sort_values('artistID', ascending=True)['mostCommonGenre']
    })
    return df.sort_values(['score'], ascending=False).head(k)


def artist_neighbors(model, title_substring, measure=DOT, k=6):
  # Search for artist ids that match the given substring.
  inv_artist_id_mapping = {v: k for k, v in orginal_artist_ids.items()}
  ids =  artists[artists['name'].str.contains(title_substring)].artistID.values
  titles = artists[artists.artistID.isin(ids)]['name'].values
  if len(titles) == 0:
    raise ValueError("Found no artists with name %s" % title_substring)
  print("Nearest neighbors of : %s." % titles[0])
  if len(titles) > 1:
    print("[Found more than one matching artist. Other candidates: {}]".format(
        ", ".join(titles[1:])))
  artists_id_orginal = ids[0]
  asrtists_id_mapped = inv_artist_id_mapping[ids[0]]
  scores = compute_scores(
      model.embeddings["artistID"][asrtists_id_mapped], model.embeddings["artistID"],
      measure)
  score_key = measure + ' score'
  df = pd.DataFrame({
      score_key: list(scores),
      'name': artists.sort_values('artistID', ascending=True)['name'],
      'most assigned tag':artists.sort_values('artistID', ascending=True)['mostCommonGenre']
  })
  return df.sort_values([score_key], ascending=False).head(k)

Here, we find the most similar artists to the band the cure. We also include the most assigned tag associated with an artist. The reccomdations are conistent with our domain knowedge of bands similar to the cure.

artist_neighbors(vanilla_model, "The Cure", DOT)
Nearest neighbors of : The Cure.
dot score name most assigned tag
9437 0.541 The Cure chillout
86790 0.527 Yellowcard rock
115825 0.526 Shiny Toy Guns electronic
49282 0.525 Johnny Cash new wave
11826 0.525 Jamiroquai chillout
97327 0.524 Scooter electronic
artist_neighbors(vanilla_model, "The Cure", COSINE)
Nearest neighbors of : The Cure.
cosine score name most assigned tag
9437 1.000 The Cure chillout
10850 0.967 Placebo chillout
14553 0.957 Arctic Monkeys chillout
8273 0.956 Radiohead chillout
4936 0.952 Depeche Mode chillout
31876 0.946 Sigur Rós chillout
artist_neighbors(reg_model, "The Cure", DOT)
Nearest neighbors of : The Cure.
dot score name most assigned tag
16680 3.214 The Beatles chillout
12363 3.212 Muse chillout
3259 3.176 Coldplay chillout
9437 3.164 The Cure chillout
18364 3.157 Nirvana pop
17472 3.116 The Killers chillout
artist_neighbors(reg_model, "The Cure", COSINE)
Nearest neighbors of : The Cure.
cosine score name most assigned tag
9437 1.000 The Cure chillout
32942 0.965 The Smiths groove
38968 0.962 U2 electronic
10850 0.958 Placebo chillout
4936 0.958 Depeche Mode chillout
43413 0.955 David Bowie chillout

We observe that the dot product tends to recommend more popular artists such as Nirvana and The Beatles, whereas cosine similarity recommends more obscure artists. This is likely due to the fact that the norm of the embedding in matrix factorization is often correlated with popularity. The regularised model seems to output better recommendations as the variation of the most assigned tag attribute is less when compared to the vanilla model. In addition, Marilyn Manson was recommended by the vanilla model in our intial run. We argue that these artists are most dis-similar! However, this observation is subject to change when you run the model, as we initialize the embeddings with a random Gaussian generator.

def artist_embedding_norm(models):
  """Visualizes the norm and number of ratings of the artist embeddings.
  Args:
    model: A train_matrix_norm object.
  """
  if not isinstance(models, list):
    models = [models]
    df = pd.DataFrame({
          'name': artists.sort_values('artistID', ascending=True)['name'].values,
        'number of user-artist interactions': user_artists[['artistID','userID']].sort_values('artistID', ascending=True).groupby('artistID').count()['userID'].values,
    })
  charts = []
  brush = alt.selection_interval()
  for i, model in enumerate(models):
    norm_key = 'norm'+str(i)
    df[norm_key] = np.linalg.norm(model.embeddings["artistID"], axis=1)
    nearest = alt.selection(
        type='single', encodings=['x', 'y'], on='mouseover', nearest=True,
        empty='none')
    base = alt.Chart().mark_circle().encode(
        x='number of user-artist interactions',
        y=norm_key,
        color=alt.condition(brush, alt.value('#4c78a8'), alt.value('lightgray'))
    ).properties(
        selection=nearest).add_selection(brush)
    text = alt.Chart().mark_text(align='center', dx=5, dy=-5).encode(
        x='number of user-artist interactions', y=norm_key,
        text=alt.condition(nearest, 'name', alt.value('')))
    charts.append(alt.layer(base, text))
  return alt.hconcat(*charts, data=df)

artist_embedding_norm(reg_model)
def visualize_movie_embeddings(data, x, y):
  genre_filter = alt.selection_multi(fields=['top10TagValue'])
  genre_chart = alt.Chart().mark_bar().encode(
      x="count()",
      y=alt.Y('top10TagValue'),
      color=alt.condition(
          genre_filter,
          alt.Color("top10TagValue:N"),
          alt.value('lightgray'))
  ).properties(height=300, selection=genre_filter)
  nearest = alt.selection(
      type='single', encodings=['x', 'y'], on='mouseover', nearest=True,
      empty='none')
  base = alt.Chart().mark_circle().encode(
      x=x,
      y=y,
      color=alt.condition(genre_filter, "top10TagValue", alt.value("whitesmoke")),
  ).properties(
      width=600,
      height=600,
      selection=nearest)
  text = alt.Chart().mark_text(align='left', dx=5, dy=-5).encode(
      x=x,
      y=y,
      text=alt.condition(nearest, 'name', alt.value('')))
  return alt.hconcat(alt.layer(base, text), genre_chart, data=data)

def tsne_movie_embeddings(model):
  """Visualizes the movie embeddings, projected using t-SNE with Cosine measure.
  Args:
    model: A MFModel object.
  """
  tsne = sklearn.manifold.TSNE(
      n_components=2, perplexity=40, metric='cosine', early_exaggeration=10.0,
      init='pca', verbose=True, n_iter=400)

  print('Running t-SNE...')
  V_proj = tsne.fit_transform(model.embeddings["artistID"])
  artists.loc[:,'x'] = V_proj[:, 0]
  artists.loc[:,'y'] = V_proj[:, 1]
  return visualize_movie_embeddings(artists, 'x', 'y')

T-distributed stochastic neighbour embedding (t-SNE) is a dimensionality reduction algorithm useful for visualizing high dimensional data. We use this algorithm to visualise the embeddings of the regularized model. Due to the large number of user-submitted tags, we decided to colour-code the top 15 tags, with the rest being labelled as ‘N/A’. Although the sea of orange, indicating’N/A’, makes it difficult to interrupt these results, the regularised model seems to adequately cluster artists of a similar genre.

tsne_movie_embeddings(reg_model)
Running t-SNE...
[t-SNE] Computing 121 nearest neighbors...
[t-SNE] Indexed 17632 samples in 0.001s...
/opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:793: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.
  FutureWarning,
/opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:827: FutureWarning: 'square_distances' has been introduced in 0.24 to help phase out legacy squaring behavior. The 'legacy' setting will be removed in 1.1 (renaming of 0.26), and the default setting will be changed to True. In 1.3, 'square_distances' will be removed altogether, and distances will be squared by default. Set 'square_distances'=True to silence this warning.
  FutureWarning,
[t-SNE] Computed neighbors for 17632 samples in 4.931s...
[t-SNE] Computed conditional probabilities for sample 1000 / 17632
[t-SNE] Computed conditional probabilities for sample 2000 / 17632
[t-SNE] Computed conditional probabilities for sample 3000 / 17632
[t-SNE] Computed conditional probabilities for sample 4000 / 17632
[t-SNE] Computed conditional probabilities for sample 5000 / 17632
[t-SNE] Computed conditional probabilities for sample 6000 / 17632
[t-SNE] Computed conditional probabilities for sample 7000 / 17632
[t-SNE] Computed conditional probabilities for sample 8000 / 17632
[t-SNE] Computed conditional probabilities for sample 9000 / 17632
[t-SNE] Computed conditional probabilities for sample 10000 / 17632
[t-SNE] Computed conditional probabilities for sample 11000 / 17632
[t-SNE] Computed conditional probabilities for sample 12000 / 17632
[t-SNE] Computed conditional probabilities for sample 13000 / 17632
[t-SNE] Computed conditional probabilities for sample 14000 / 17632
[t-SNE] Computed conditional probabilities for sample 15000 / 17632
[t-SNE] Computed conditional probabilities for sample 16000 / 17632
[t-SNE] Computed conditional probabilities for sample 17000 / 17632
[t-SNE] Computed conditional probabilities for sample 17632 / 17632
[t-SNE] Mean sigma: 0.179141
/opt/hostedtoolcache/Python/3.7.12/x64/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:986: FutureWarning: The PCA initialization in TSNE will change to have the standard deviation of PC1 equal to 1e-4 in 1.2. This will ensure better convergence.
  FutureWarning,
[t-SNE] KL divergence after 250 iterations with early exaggeration: 77.060295
[t-SNE] KL divergence after 400 iterations: 2.758283

Demo

You can find the most similar artist to a specified artist (that is contained in Last.FM) using the artist_neighbours() function. Similarily, you can find the top 10 recommendations of a particular userID [0 to 1891] using the user_recommendations() function. The first argument specifies the desired model, second argument the userID and third the top-k recommendations. Fourth argument represents the similarity measure, either DOT or COSINE (default = DOT, not a string).

user_recommendations(reg_model, 234, 10, COSINE)
score name most assigned tag
126491 0.925 Bandas Gaúchas - www.DownsMtv.com N/A
126539 0.922 Menstruação Anarquika N/A
126554 0.921 Moreira da Silva N/A
126582 0.901 Validuaté N/A
126400 0.900 The Vibrators punk
126583 0.840 The Saints punk
126513 0.825 Graforréia Xilarmônica rock
126540 0.814 The Exploited uk
103973 0.807 The Animals rock
126451 0.807 Tim Maia pop

To further demonstrate the robustness of the system and measure the serendipity of our model, we incorporate the top artists that we listen to on Spotify (i.e. an unknown user). Note, these artists have to also be in the Last.FM dataset. The recommendation system should output similar artists based on it’s artist embeddings. The Spotipy library is used to interact with Spotify’s API. The similarity measure used is the Dot product. Due to the short lived nature of the spotify token and the fact you have to sign into a pop-up to retrieve the authentication token, we simply list our top 5 artists manually. If we did not, jupyter book will stall when attempting to build as it is waiting for our response. However, we provide the code used to retrieve the short-lived token for verification purposes.

"""
import spotipy
from spotipy.oauth2 import SpotifyOAuth
client_id = <insert_your_client_id>
client_secret = <insert your client secret>
redirect_url = '<insert your redirect uri>
scope = "user-top-read user-read-playback-state streaming ugc-image-upload playlist-modify-public"

authenticate_manager = spotipy.oauth2.SpotifyOAuth(client_id = client_id,client_secret = client_secret,redirect_uri =redirect_url,scope =scope,show_dialog = True)
sp = spotipy.Spotify(auth_manager=authenticate_manager)

artists_long = sp.current_user_top_artists(limit=5, time_range="long_term")
"""
top_5_artists =[
                 'Coldplay',
                 'Paramore',
                 'Arctic Monkeys',
                 'Lily Allen',
                 'Miley Cyrus'
]
spotify_reccomdations_df = pd.DataFrame()
for artist in top_5_artists:
  similar_artist_df = artist_neighbors(reg_model, artist)[['name','dot score']]
  spotify_reccomdations_df = pd.concat([spotify_reccomdations_df, similar_artist_df])
spotify_reccomdations_df.sort_values('dot score', ascending=False).head(10)
Nearest neighbors of : Coldplay.
[Found more than one matching artist. Other candidates: Jay-Z & Coldplay, Coldplay/U2]
Nearest neighbors of : Paramore.
[Found more than one matching artist. Other candidates: Paramore攀]
Nearest neighbors of : Arctic Monkeys.
[Found more than one matching artist. Other candidates: Arctic Monkeys vs The Killers]
Nearest neighbors of : Lily Allen.
Nearest neighbors of : Miley Cyrus.
[Found more than one matching artist. Other candidates: Miley Cyrus攀, Demi Lovato Ft. Miley Cyrus Ft. Selena Gomez Ft. Jonas Brothers, Miley Cyrus and Billy Ray Cyrus, Miley Cyrus and John Travolta, Hannah Montana and Miley Cyrus]
name dot score
3259 Coldplay 3.705
12363 Muse 3.574
37842 Paramore 3.550
24447 Lily Allen 3.520
17832 Green Day 3.485
6543 Lady Gaga 3.485
6543 Lady Gaga 3.474
17278 Kings of Leon 3.471
17472 The Killers 3.466
6543 Lady Gaga 3.464

We believe these recommendations are good as when our model was given an artist in the top five, it actually recommended other artists in the top five list.

Evaluation Code

This is the code needed to produce the in-depth model comparison. As we decided to use different notebooks for different models, the results of this code will be combined and explained later in the book.

## create holdout test set for each user (15 items)
user_artists = pd.read_csv('data/user_artists.dat', sep='\t')
user_ids = []
holdout_artits = []
for user_id in user_artists.userID.unique():
  top_15_artists = user_artists[user_artists.userID == user_id].sort_values(by='weight').head(15).artistID.tolist()
  if len(top_15_artists) == 15:
    holdout_artits.append(top_15_artists)
    user_ids.append(user_id)
holdout_df = pd.DataFrame(data={'userID':user_ids,'holdout_artists':holdout_artits})

holdout_df.to_csv('data/evaluation/test-set.csv',index=False)
## Finding the models vanilla, regualrised predection for each user. 
def get_top_15_model_predictions(model, measure):
  """Computes the top 15 predictions for a given model
  Args:
    model: the name of the model
    measure: a string specifying the similarity measure to be used. Can be
      either DOT or COSINE.
  Returns:
    predicted_df a dataframe containing userIDs, their top 15 artists by the model, and the correspnding scores.
  """
  artist_name_id_dict = dict(zip(artists['name'], artists['artistID']))
  user_ids = []
  predicted_artists = []
  scores_list = []
  for new_user_id, orginal_user_id in orginal_user_ids.items():
    top_15_names = user_recommendations(model, new_user_id, k=15,measure=measure )['name'].values
    top_15_scores = user_recommendations(model, new_user_id, k=15, measure=measure )['score'].values.tolist()
    artist_ids = []
    for name in top_15_names:
      artist_ids.append(artist_name_id_dict[name])
    predicted_artists.append(artist_ids)
    user_ids.append(orginal_user_id)
    scores_list.append(top_15_scores)
  predicted_df = pd.DataFrame(data={'userID':user_ids,'predictions_artists':predicted_artists, 'score':scores_list })
  return predicted_df
# save the recommended artits into dfs and save them to data/evaluation folder
vanilla_dot_pred= get_top_15_model_predictions(vanilla_model, measure=DOT)
vanilla_cos_pred = get_top_15_model_predictions(vanilla_model, measure=COSINE)
reg_dot_pred= get_top_15_model_predictions(reg_model, measure=DOT)
reg_cos_pred = get_top_15_model_predictions(reg_model, measure=COSINE)

vanilla_dot_pred.to_csv('data/evaluation/vannila_dot_pred.csv',index=False)
vanilla_cos_pred.to_csv('data/evaluation/vanila_cos_pred.csv',index=False)
reg_dot_pred.to_csv('data/evaluation/reg_dot_pred.csv',index=False)
reg_cos_pred.to_csv('data/evaluation/reg_cos_pred.csv',index=False)